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Abstract—This article presents a mathematical framework  coming from severakources Sensors mounted on a robot
based on information theory to compare temporally-extended  or recording of neural activity are examples of information
embodied sensorimotor organizations. Central to this approach ¢4\ rces for artificial and living systems, respectively.

is the notion of configuration. a set of distances between . . . . . .
information sources, statistically evaluated for a given time span. Using information sources as a basic mode!llng unit has
Because information distances captursimultaneouslyeffects of ~ S€veral advantages. Models can be framed using the mathe-
physical closeness, intermodality, functional relationship and matically well-defined tools of information theory. Data com-
external couplings, a configuration characterizes an embodied ing from various sources (symbol, numerical) can be blended
interaction with a particular environment. In this approach, in a unified framework. And finally, the same approach can

collections of skills can be mapped in a unified space as L e -
configurations of configurations. This article describes these be used to study both living and artificial systems.

different abstractions in a formal manner and presents results Information theory has historically been mainly concerned
of preliminary experiments showing how this framework can be ~ with information transmission between a sender and a re-
used to capture the behavioral organization of an autonomous ceiver through a channel [26], [2]. However more recently
robot. . . . . several lines of research have focused on defining theoretical
Iaxlgt(ijc?r)l( ;’lzrorrr}tsh—n:?fsémitrlggn:;liitélcrh;:ggpanson of skills, re- measures fo_r adgressing informatilon integration [30], [27]
and information distance between information sources [15],
[3]. Crutchfield in particular has shown that the space of
information sources can be equipped wittnatric[3]. There-

This article is concerned with processes for comparindore, it is possible to consider a form spatial relationship
and making analogies between embodied sensorimotor obetween sources and to adapt some of the vocabulary and
ganizations. This issue is central in the challenging quedbols of geometryto the domain of information theory.
for autonomous development [31] as the possibility to find The fact that two information sources are related in terms
structural similarity between sensorimotor schemas is thougtdf information (i.e. that they are close in the information
to be crucial for the emergence of higher-level forms ofspace) means, in a informal way, that knowing the state of
cognition. In particular they permit to consider possibilitiesone permits to know things about the state of the other.
of transfer for know-how developed in sensorimotor contextsThis happens when there is a mutual causal relationship
to more abstract spaces [17], [23]. Important literature existsetween the two sources or when information coming from
on how to compare explicit symbolic structure (e.g. [9]), butboth sources result from common causing factors. In our
many authors have argued that generalization and transfeontext, this can mean several things. The sources can be
of skills could also be (maybe even more) efficient in thephysically related and activated by the same localized stimuli.
absence of symbolic representation [22]. Or they can be functionally related and activated as a result

Given the variability of possible structures that can po-of a particular control pattern. Or they can be only related in
tentially underly the formation of sensorimotor schemas ([1ftime, but still informationally related as the organism interacts
(p.36-40), [4], [18], [24], [29]), the approach taken in this ar-with a slowly changing continuous environment. Or they can
ticle has been made as general as possible. Therefore, it could related as a result of an external coupling, like in the
be applied to a large variety of systems, natural or artificialcase where the organism engages in reciprocal interaction
for discovering structural similarities between temporally-with peers. Information is a common currency that permits
extended sequences. The starting point of this approado blend these multiple factors.
is to suppose that behavioral complexity can be captured A set of distances between information sources, statisti-
by studying the active organization in time of information cally evaluated for a given time span, specifiesoafigura-

I. INTRODUCTION



tion. Because information distances captgimultaneously Il. DESCRIPTION OF THE APPROACH
effects of physical closeness, intermodality, functional relaa_ |nformation sources

tionship ar]d e.xternal poupl!ngs, a cqnf|gurat|o'n characterlz'es Let 2 be a system equipped with a setefinformation
an embodied interaction with a particular environment. This

. . . sources{X;}. Information sources can be proprioceptives
leads to interpretation of the emergence of behavioral com(- (X3} brop P

; ) . . . . corresponding to internal states QJ, heteroceptives (cor-
plexity, as a collection of interrelated configurations in the . : ; ) .
responding to information abo@t’s environment), or both.

Vi . . .
(ﬁeasurements are obtained out of each information source.

be self-organized n a t_opologlcal way in a unified SPACEL ose measurements typically correspond to elements be-
where related configurations are grouped together and md?o'nging to an arbitrary number of bins. At each timean

e e e e ol mens, conespords 10 the omatn s The
9 9 ) following notation will be usedX;(¢) = x; . As usual with

_ o _ . such kind of framework, the choice of the number of bins
The geometrical approach presented in this article is dits an important issue [25]. At any time the state of is
rectly inspired by several methods concerning unsuperviseghptured by the vectak ()

map building recently described in the field of artificial
intelligence and autonomous robotics. Pierce and Kuipers X(t) = (X1(t), Xa(t), ..., Xn(1)) 1)
present a method for building maps of a sensory apparatus Values of X (¢) can potentially depend on the environmen-
out of raw uninterpreted sensory data [21]. This so-calledal context in which the systef is placed, the current activ-
sensory reconstruction method is based on various distancig of €2, as well as its physical and structural organization.
between sensors such as a _normahzed Hamming d'St‘?‘”%‘? Information distance between two information sources
metric and a frequency metric. Sensors are clustered into - ] ]
subgroups based on their relative distance. The dimensional- The conditional entropy for two information sourceg
ity of each subgroup can then be computed, related sensd?§d X; can be calculated as
can be projected to form a sensor map. Building on this IX.) — . s
sensory reconstruction method, Olsson, Nehaniv and Polani HX;1X) ZZp(xz,xj)loggp(x]\xz) @)
[20], [19] have suggested to use the information metric
defined by Crutchfield [3] as a more interesting measure of'
the distance between two information sources. They have
cpnducted expe.nmenFs with various sensor sets mCIUdmgssociated WItht; if the value of X; is known.
visual and proprioceptive sensors on an AIBO robot. Relate Crutchfield de%ines the normalized information distance
approaches were also investigated by Kuniyoshi's researc[gl ru . . .
: etween two information sources as:

team [16]. Most of these approaches interpret such sensory H(Xi|X;) + H(X;|X;)
reconstruction methods as a way of building maps of sensors d(X;, X;) = tJ J (3)
in an unsupervised manner. Some of these works make the H(Xi, X;)
comparison with somatosensory maps discovered in the brain. d is a metric for the space of information sources![3]

This means that it has the three properties of symmetry,

The geometrical approach described in this article extendgduivalence and triangle inequality.
and, more importantly, reinterprets this method. The sensory ¢ d(X,Y) = d(Y, X) follows directly from the symmetry
reconstruction method is well-adapted to address processes Of the definition
underlying the emergence of behavioral complexity, but it « d(X,Y) = 0 if and only if X andY are recoding-
may be misleading to interpret it as a formation of a body  €quivalent (in the sense defined by Crutchfield [3]).
map. A particular configuration captures not only aspects of ¢ d(X,Z) < d(X,Y)+d(Y, Z)
an agent's embodiment, but also reflects the agent's current As H(X,;, X;) = H(X;) + H(X,|X;), d < L.
activities and the situated nature of its interaction with the d = 1 means that the two sources are independent.
environment. In particular, a specific configurations appears
in the case of couplings with other agents or in cases of The existence of this metric indicates that the space of
remarkable coordination patterns. Integrated views of théformation has a topological structure. This permits in-
schemas organization correspond to a meta-level, namelgresting development such as the continuity of functions
to configurations of configurationsThe rest of the paper on information sources or the convergence of sequences of
describes the approach in a more formal manner and preserifgormation sources. However, these properties are not central
results of preliminary experiments showing how this framefor the issues discussed in this article.
work can be used to capture the behavioral organization of it is its main advantage compared to mutual information
an autonomous robot. MI(X;,X;) = H(X;) + H(X;) — H(Xi; X;)

xX; ZTj

herep(xz;|x;) = p(x;, x;)/p(x;).

H(X;|X;) is traditionally interpreted as the uncertainty




C. Configuration where ||p; — pj|| is the Euclidean distance between the
Let us define aconfigurationas the information distance POSition of theith andjth point a”ddi,f‘(:h% corresponding
_ _ _ _ ) : ) e )
matrix D corresponding to the different distances betweerlistance in the matrixD. There are=—— equations to

the information sourceX; satisfy. A set ofn points of dimensiom — 1 permits to solve
these equation given this set of constraints optimally, but in
d(X1, X1) ... d(X1, X5,) order to get a lower dimension representation approximation

d(Xs2,X1) ... d( X2, X,) must be taken. Pierce and Kuipers describe a method used by
....................... statisticians to determine a good dimensionality for projecting
d( X, X1) ... d(Xp, X5) a given set of data [21]. In the rest of the article, two-
dimensional projections are used for illustrative purposes
although they may not be the optimal ones.

The information contained iD or A can be represented

D summarizes some important aspects about the organizg]- two dimensions using a relaxation algorithm. The

tion of the information sources of the systéimby specifying algorlj[hm IS an |terat|ve.procedure of positioning ppmt; ina
. ; . . . two-dimensional space in such a way that the metric distance
which sources are related in terms of information and whic

. ) : . . between two points in this map is as close as possible to
ones are independent for the context in which the informatio ; . . . : .
. . the distance in the distance matrix (other algorithm exist but
is gathered. Thegeometryof the mesh corresponding to

the different sources is specified by the interdependenciethey use gddmonal |nf0rma}t|on like the relative orientation
connections between points [11], [5]).

captured inD and various representations can be created 8
picture this structure (see below).

As d(X;, X;) = 0, elements of the diagonal are all zero.
As d(X;, X;) = d(X;, X;), D is symmetrical.

The algorithm used consists of an iteration of two simple
D. Configuration of configurations steps. First, each information sourcg (or configuration

A configuration can be considered as a point in a configi) 1S randomly assigned to a poip{ on a two-dimensional

uration space. Various distances between configurations c&2ne:

be envisioned. A simple one is the following:
1) The forcef; on each poinip; is computed as:

AM,N) = [ " (my — np)? ®) fi=Y i
ki
. h
where my; and ng; are the components of thith line where
and thelth column of respectively th&1 and N matrix. fi; = (Ipi — pil| — d(Xi,Xj))M

Ip; — pill

For a given set of configurations, it is therefore possible 2) Each pointp; is moved according to the forcg:
to consider the distance matrix of configurations

d(D1,D4) ... d(Dq,Dy,) pi = Pi +1fi
d(D3,Dy) ... d(Dg,Dy)

d(Dy,D1) ... d(Dy,Dy)

(6) wheren = 1/n.
The resulting map partly depends on the initial conditions
of the iteration. Several examples of such maps are presented

As d(Dj;, D;) = 0, elements of the diagonal are all zero. in the following sections.

As d(D;, D;) = d(Dj,D;) = 0, A is symmetrical.

The configuration of configuratiom& captures the organi- 2) Representing configurations of configuratiofgr rep-
zation of sequences of configurations. Related configuratiorresenting configurations of configurations, additional meth-
correspond to related activities performed in similar contextsods based on unsupervised learning can be used, as points
(i.e. configurations) are known. Kohonen’s self-organizing
topological maps are commonly used in artificial neural

1) Representing configurationsSoing from relative po- network models [14]. For instance, they have been used effi-
sitions as they are captured by a distance maDixo a ciently to model conceptual spaces [8]. Self-organizing maps
map representation where poinfp;} can be placed is a are suitable for situations where the number of elements to
constraint-satisfaction problem [21]. Each couple of pointgproject is open and potentially increasing over time (however,
pi andp; should satisfy: if the number of examples is not restricted, examples should

be presented in a repetitive manner). This is why they are
llpi — pjl| = di; (7) used preferentially to map configurations of configurations

A =

E. From distance matrices to maps



(see table | for a comparison of relaxation methods and self-
organizing maps).

TABLE |
RELAXATION METHOD VS SELFORGANIZING TOPOLOGICAL MAPS

Relaxation Self-
method organizing
topological
maps
Suitable for systems where only Yes No .l
distances are specified (and npt b
points) )
Suitable for systems with an open No Yes g s
number of prototypes g
Can be used to map configurationsYes No
Can be used to map configurationsYes Yes
of configurations

Ill. EXPERIMENTS WITH AN AUTONOMOUS ROBOT Fig. 1. Top, front, and side view of an AIBO robot with blue numbers

Experiments of this section involve an autonomous four-ndicating the indices for information sources used in experiment (Figure
legged robot (Sony AIBO ERS-7, dimensions: 180 (W) x2dapted from the Sony AIBO technical manual)
278 (H) x 319 (D) mm). A set of 18 information sources

{X1, X, ...X15} is used in these experiments. They corre-
spond to distance sensors and proprioceptive position sensofs o0f values have been collected for each of thisse

(Table Il and figure 1). Each leg has 3 degrees of freedonS€NSOrs. Figure 2 shows the distance matrix corresponding

as well as the head. Infrared distance sensors are mount OdthIS behavior and the associated two-dimensional map.

on the head and on the main bédgee table Il for details n the map, the arrangement of the information sources
of the 18 sensors used in this set of experiments) corresponds roughly to the sensor distribution on the body

of the robot. Distance and head sensors are arranged in the

TABLE I upper right half of the map, the knee joints of all four legs

SENSORS USED ON THE ROBOT on the lower right of the map and all other leg sensors on
Number Name the left side. This particular emergent organization results
1-3 distance sensors from the physical structure of the robot as well as from the
‘7":8 :}gﬁ?ég:ﬁﬁggcept"’e sensors) behavioral patterns it conducts in a particular environment.
10-12 right hind leg In this particular setting, intrinsic embodiment constraints
13-15 left front leg linking sensor information are probably the most significantly
16-18 left hind leg captured (e.g. spatially close similar sensors). However, for

other coordination patterns emergent configurations may dif-

The robot can be programmed to do various kinds ofer greatly.
behavior, that range from simple motor skills like walking In a second experiment, the configuratiohs for 11
to integrated forms of behaviors involving more complexdiffel’ent types of robot behavior have been calculated. They
sensorimotor coordination like chasing a ball. In its regularconsisted of five different walking behaviors (walk forward,
autonomous behavior the robot can switch between thegwalk right, ...) and six less oscillating behaviors (cheer,
various kinds of behavior depending on the evolution of itsswing, ...). For each behavior, three samples of lerigth
internal drives and opportunities present in the environmenere taken, which corresponds to about seven seconds each.
[6], [7]. Although a major issue is to design algorithms The same sensors as in the previous example were used.
permitting to bootstrap new forms of behavior, this sectionThe names of th&3 behaviors are listed in table Ill. The
only considers collections of already programmed skills. ~ relationship between thess configurations has been cap-

In a first experiment, sensory data have been collectetired by computing the distance matrix of this configuration
from the robot performing a slow walk while moving its of configurations. Corresponding maps have been obtained

head continuously from side to side. During the walkgo ~ using a Kohonen self-organizing map with1a x 10 grid
(see figure 3) and the relaxation algorithm (see figure 4 b)).
2The robot has a colour camera mounted above its mouth, electro-static In the distance matrix of figure 4 and in the two maps of
touch sensors, paw sensors, LED lights, all of which are not used in th .
present experiment but have been exploited in other research conducted wﬁlgure 3 and 4 one can Clearly see two types of structuring.
this robot (e.qg. [28], [12]) First, configurations of same types of behavior are usually



Fig. 2. Walking robot (a) Distance matrix (b) Corresponding two-
dimensional map

NAMES OF THE33 EXAMPLES OF VARIOUS TYPES OF BEHAVIOR

TABLE Il

Number Name

1-3 forward walk
4-6 backward walk
7-9 walk to the right
10-12 turn left

13-15 turn right
16-18 swing

19-21 cheer happy 1
22-24 cheer happy 2
25-27 cheer happy 3
28-30 cheer sad 1
31-33 cheer sad 2

close. Second, at a higher level, configurations for walking
behaviors and non-walking behaviors have been differentiated
and appear as almost independent subgroups in the maps.
Thus, in this example, various situated activities are orga-
nized in some forms of hierarchy. Clustering behavior in a

10r 21 : : .
9F 20
8 19 14

Fig. 3. Map of configurations based onl@ x 10 Kohonen SOM. The
triples represent same types of behavior. Walking behaviors are marked in
red, all other behaviors are marked in blue.

hierarchical manner plays an important role for many robotic

applications (e.g. [13]). Capturing such kind of emergen
organization is also likely to be crucial to permit transfe
and analogies between different kinds of behavior.

IV. CONCLUSION

S:ig. 4. (a) Distance matrix corresponding to the configuration of3the
rconfigurations. Small distances are plotted in blue, big distances in red. (b)
Map of configurations based on the relaxation algorithm.The triples represent
same types of behavior. Walking behaviors are marked in red, all other
behaviors are marked in blue.

This article presents a mathematical framework for map-
ping embodied sensorimotor organizations. It is based on two



abstractions characterizing information dependencies in a Sgb] V. Hafner and F. Kaplan, “Interpersonal maps and the body correspon-
of information sources. Configurations reflect context depen-
dent embodied sensorimotor organizations. They capture in
a single format information about a physical body structuref11]
particular coordinated actions performed and environmental

context. At a second level, configurations of configurationg;,

give an integrated view of a collection of skills. This article
provides simple illustrations of configurations for a collection
of preprogrammed skills.

[13]
This approach can easily be extended to account for skills

13

involving couplings between agents. Proprioceptive as well as
Lo X : . .14
heteroceptive information can be considered as mformatloh
sources. In fact, for most organisms, no clear line can bas)
drawn between both. Another set of experiments conducted 6]
the same framework showed how in cases of strong couplings
between agents, a “we-centric” space can emerge in which
the agent’s body structure can be directly mapped onto thé7]
structure of an observed body [10].
Although these preliminary results are promising, more
work needs to be done to show the relevance of this frame-
work for developmental robotics. Key issues that will be
addressed in future work are first, to compare this approach
with other ways of making analogies between sensorimotolfl
trajectories and second, to investigate with operant models
how emerging structures like configurations play a role in anz1]
overall developmental picture.
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