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Abstract � Many studies address how neurons in the barrel cortex of rats react to stimula-

tion of the rat�s whiskers. In this study we analyse how the statistical properties of whisker 

deßections from typical surfaces relate to the properties of neurons in the somatosensory 

system. We built an artiÞcial whisker system to record realistic natural tactile data. An 

artiÞcial whisker is moved about a set of surfaces of everyday objects. We analyse how 

simulated neurons can represent such stimuli in an optimally sparse fashion. These 

representations predict a number of interesting properties of neurons in the somatosensory 

system that have yet to be measured. 

 

1. Introduction 
  

Whiskers provide an important source of information to rats and other rodents [26]. Rats can, for example, 

distinguish surface properties (texture) purely on the basis of cues from their whiskers [7, 5]. They can 

furthermore use their whiskers to discriminate objects [4] based on their shape. As the rat explores its 

environment, its whiskers are moved over surfaces of various shape and texture. Neurons in the sensorimotor 

system thus need to transmit the relevant information to subsequent brain areas. The whisker deßections caused 

by these stimulations deÞne the input to the rat�s somatosensory system. Although a large number of studies 

analyse the electrophysiological properties of the barrel cortex [1, 17, 18], the relevant features of its input that 

should be transmitted by neurons have remained unknown.  

Recent studies show a growing interest in the texture discrimination abilities of rats (for a review see [16]). 

Frequencies induced in the vibrissa hair are discussed as the relevant information used for this behaviour [19, 9]. 

Furthermore, it was shown that for an artiÞcial whisker sensor, different textures could be discriminated 

analytically using power spectra [6].  

In an emerging branch of neuroscience, optimal coding of natural scenes, it is studied in what respect 

neurons optimally encode natural stimuli. As animals grow up and evolve in a world of approximately constant 

properties, the properties of the brain should be well matched to the properties of the world [3]. Within this Þeld, 

many studies address the properties of natural stimuli in the visual domain addressing the scaling behaviour of 

natural images [22] or the properties of higher order statistics using sparse coding [21, 20, 25]. Theses studies 

showed that many properties of the visual cortex can be understood as sparsely encoding the stimuli it typically 

encounters. A number of studies also address sparse coding in the auditory domain addressing the auditory nerve 

[14] or the primary auditory cortex [13]. Again these studies showed that many properties of the auditory system 

can be understood as sparsely encoding natural sounds.  

Optimally sparse in these studies means that the neurons often have an activity close to zero and then 

sometimes have very high activity. Drawing upon this inspiration, we analyse the somatosensory system with 

similar methods. Sparseness has two distinct albeit related meanings: (1) At any point of time only a small 

number of neurons should be active (sparseness over the population). (2) Over the course of time each neuron 
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should be active only rarely (sparseness over time). While the early explorations of sparseness often used 

deÞnition 1, most modern studies use deÞnition 2 as the implementation is typically a lot faster and in many 

cases the results are identical. There are a large number of discussed reasons why sparseness should be useful. 

Just to name two of them: (1) Sparseness ensures that information is transmitted using a minimal number of 

spikes emitted by the neurons and therefore results in a minimal energy consumption of the brain. (2) Sparse 

representations also maximise the independence between neural outputs and thus make recognition tasks easier 

for subsequent stages of cortical processing.  

In this paper, we examine the statistics of natural stimuli to the somatosensory system. We thus examine if 

not only visual and auditory but also somatosensory stimuli can be understood as sparsely encoding typical 

stimuli. In analogy to the databases of natural images used for visual studies, we Þrst need a database of natural 

whisker deßections. We thus built an artiÞcial whisker system with a real rat whisker attached to a capacitor 

microphone. This set-up was described in previous papers [15, 8]. This extends previous robotics studies that 

used simple whisking devices measuring distances or contact only [10, 23, 11], but do not capture the rich 

information picked up by natural whiskers in a biologically plausible way. We collect whisker data by actively 

moving the whisker over a set of complex stimuli. The motion pattern of the whisker in this conÞguration 

closely matches the motion patterns of the whiskers in natural conditions (rough visual observation) and has 

similar movement frequency and the same shape.  

We analyse if the neurons in the vibrissal system can be understood in terms of leading to sparse activity in 

response to these natural inputs. We represent the data coming from our artiÞcial whisker system in the 

spectro-temporal domain to allow for a large class of spectrotemporal responses. Simulated neurons optimally 

coding for these data are analysed and generate predictions about neurons in the somatosensory system.  

 

2. Hardware Design and Methods  
 

This section describes the artiÞcial whisker system we built and the responses we recorded in response to 

moving the whisker over natural surfaces. The desired artiÞcial whisker should be functionally comparable to a 

natural rat whisker and therefore be sensitive to small amplitude deßections and fast oscillations. We 

investigated different designs, including piezo-electric crystals and small capacitor microphones. The inßuence 

of different whisker materials (metal wire, polyvinyl, human hair, rat whiskers) has also been compared [15]. Rat 

whiskers respond to a range of spatial frequencies and showed little oscillations. The most promising results 

were gained with a combination of the rat whisker with a capacitor microphone technique, which is described in 

the following subsection.  

 
2.1. The ArtiÞcial Whisker System 

  

 
Figure 1. Basic schematic of the artiÞcial whisker with an electret microphone picking up the oscillations and 

converting them into electrically measurable signals. The whisker is glued onto the membrane of the microphone. 

The deßection of the membrane is measured by the change of capacitance. The related change of voltage is fed 

into a preampliÞer circuit. 

 

We attached a rat whisker to the diaphragm of a capacitor microphone using cyanoacrylic superglue. 

Vibrations and displacement of the hair results in deformations of the microphone membrane. The resulting 

change in voltage is pre-ampliÞed and digitally recorded. This technique allows us to measure fast oscillations of 
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the whisker even if the amplitude is very low. The microphone with the rat whisker is attached to a servo motor 

to produce active whisking in a controlled way as described in the next section. A schematic drawing of the 

device is shown in Þgure 1, a picture of the artiÞcial whisker system can be seen in Þgure 2.  

  

 
 

Figure 2. Image of the artiÞcial whisker system used for recording the data.  

 

2.2. The Deßections of the ArtiÞcial Whisker  

 

We recorded deßections from a single whisker being automatically swept over different objects (sandpaper, 

leather, wool, etc.) with a servo motor turning back and forth at frequencies of either 1 Hz or 4 Hz. While this is 

a slow movement it is of the same order of magnitude as natural whisking of rats which is at about 8 Hz. 

Capacitance readings are sampled at 4000 Hz. In contrast to a previous study [8], the stimulation of the whisker 

was modelled on the active whisking behaviour of rats and mice. Previously, data was acquired either by 

manually sweeping the sensor across different surfaces or by stimulating the whisker by a rotating drum covered 

with sandpaper of varying roughness. In the Þrst case, small variations in distance and speed could not be 

controlled and the whisker was not tilted as in natural whisking. The latter stimulation does not correspond to the 

biological reality and results in continuous, uniform stimulation. As some electrophysiological Þndings about 

differing responses in the whisker processing pathway suggest, this distinction might be highly relevant [24]. A 

typical trace of capacitance of the artiÞcial whisker system can be seen in Þgure 3. It has eight signal peaks per 

second because of the forth and back movement. 

 

  

Figure 3. Capacitance trace measured by the artiÞcial whisker system while whisking back and forth over an 

object. 
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3. Results 
 

3.1. Representation in Spectrogram Space  

 

Time varying data are conveniently analysed in spectrogram space, the space spanned by frequency and 

time. In this space both changes over time and over frequency are easily understood. This representation is 

particularly useful for the whisker system since rats are able to discriminate surfaces of different spatial 

frequencies [5]. It has also been shown analytically that the whisker oscillation frequencies elicited by different 

textures can be used to discriminate between different surfaces [6]. We thus present the input signals as 

spectrograms. The resolution on the tonotopic axis is 64 points, covering a frequency range from 1 to 512 Hz. In 

Þgure 4, three typical samples of such transformed whisker data can be seen. These spectrograms show that 

whisker deßections lead to a largely conserved frequency-time response.  

 

 
Figure 4. Sample spectrogram of whisker data (left: 1 Hz data, right: 4 Hz data). The frequency axis ranges from 

1 Hz to 512 Hz while time runs from 0 to 1000 ms in steps of 10 ms. The colour codes for the intensity, red for 

high values and blue for low ones.  

 

3.2. Principal Component Analysis  

 

Neurons usually represent the properties of stimuli over a localised window of time. To analyse the 

properties of these stimuli we cut the spectrogram data in windows of 250 ms each, overlapping by 100 ms. The 

temporal resolution of these windows is 25 points. We subsequently assemble a set of 24360 samples of data 

spectrograms from a recording time of about 4 minutes.  

 

 
 

Figure 5. First 10 principal components of the spectrogram data. The PCA is applied to the whisker data in 

spectrogram space, using windows of 250 ms.  
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For the learning studies, the spectrograms are Þrst compressed by a principal component analysis (PCA) 

using the Þrst nP CA = 100 principal components (out of 25 × 64 = 1600). These components capture more than 

96% of the variance. In Figure 5, the Þrst 10 principal components of the spectrogram data are shown, sorted by 

the size of their corresponding Eigenvalues. The purpose of the PCA is merely the compression of the data. It 

does not signiÞcantly inßuence the results of the sparse coding described in the following subsection.  

 

3.3. Sparse Coding and ICA 

  

A set of 32 simulated neurons is trained to optimally code for the recorded dataset. The activity of the 

neurons is calculated as  

Ai(t)= I(t)Wi(t),  

 
where Ai is the activity of the neuron, Wi is the weight vector of the neuron i. I(t) is the input vector of length 

nPCA = 100 shared by all neurons. This input vector itself again contains a representation of time as it encodes the 

whole spectrotemporal window. The weight vector of each neuron is optimised by scaled gradient descent to 

minimise the following loss function:  
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with C = cov(A) being the n × n covariance matrix of A 

 

\cauchy is a function that favours sparse representations. The two other loss functions ensure the standard criterion 

used in Independent Component Analysis (ICA) and sparse coding studies that the output variances should be 

unitary and the output covariances should be vanishing. It can be shown (see [12]) that the decorrelation term is 

equivalent to minimising the reconstruction error for the original dataset, given a linear system and an 

overcomplete set of neurons.  

 

3.4. Spectrotemporal Receptive Fields  

 
Simulated neurons are optimised to sparsely encode naturally occurring whisker deßections. Figure 6 shows 

the general properties of the resulting spectrotemporal receptive Þelds. Out of 32 receptive Þelds, 18 are similar 

to plot A, 6 are similar to plot B, and there are some receptive Þelds looking like C, D, and E. Since \cauchy is 

symmetric, the receptive Þelds can have positive or negative localisation features. Most of the analysed neurons 

are localised in time and frequency.  

 

 
Figure 6. Five typical samples of colour-coded spectrotemporal receptive Þelds out of 32 neurons. y-axis: 

frequency (1 Hz to 512 Hz), x-axis: time (0 to 250 ms).  
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To further quantify this property, we introduce two measures of localisedness (Þgure 7). For the analysis, 

we calculate the average energy over time, and the frequency for each receptive Þeld, respectively. We also 

measure the width of the maximum peak at half the peak value for time localisation, and the octaves log(fl /fh) 

for frequency localisation. More than 96% of the receptive Þelds have a localisation measure in time of less than 

80 ms. This seems to be necessary for texture discrimination. Arabzadeh et al. [2] report that rats can distinguish 

textures already after an offset of 5í15 msec after stimulus onset. The receptive Þelds have a tuning width in 

frequency of less than one octave in 81% of the neurons. The cells coding for the data recorded for this research 

show signiÞcantly higher localisedness than cells coding for the sandpaper data (see [8]).  

This is in analogy to sparse simulated neurons in the visual system that obtain localised receptive Þelds in 

space and orientation [21]. In addition to this, they are often tuned to changes or even modulations of the energy 

of the input over time, such as C and D in Þgure 6. This property might be useful for tactile texture recognition. 

We predict that in a similar setup for electrophysiological measurements, the somatosensory neurons should be 

tuned to both energy and frequency.  

 

 
Figure 7. Histograms showing the localisedness of the spatiotemporal receptive Þelds for frequency in octaves 

(left Þgure) and for time in ms (right Þgure). The number of examined receptive Þelds is 32.   

 

4. Discussion  

 
We predicted properties of cells as they might be found in the somatosensory system of a rat by simulating 

neurons that receive input from an artiÞcial whisker system and optimising their properties so that they exhibit 

optimally sparse response patterns.  

There are two major assumptions that have to be considered: One is the choice of the preprocessing of the 

data. We decided to use spectrograms since data received from whiskers have very similar properties to auditory 

data with regards to their dimensionality and structure. It thus is likely that similar analysis methods should be 

used. It is up to date not known, what preprocessing is performed on the information travelling from the whisker 

follicle in rats to the barrel cortex. The other assumption is that the natural input is not assigned a class by any 

means of supervised learning, the clustering happens completely unsupervised on input data varying in material, 

speed of movement, frequencies, etc.  

Our study shows that a pressure for sparse coding together with the chosen pre-processing would results in 

neurons that are typically localised both in time and in frequency. Modulations in time has been shown for 

neurons in the barrel cortex: A recent study by Arabzadeh et al. [2] has investigated neurons in the barrel cortex 

of rats and found no speciÞty for speciÞc frequencies, but an encoding of the product of frequency and amplitude 

of the whisker movement. This seems to be in contradiction to our results, however, there are major differences 

between the two studies. The experiments described in [2] have been performed on anaesthetised rats without 

active whisking. Our experiments use active whisking frequencies of 1 or 4 Hz. Their stimulus to the whisker is 

a very controlled signal consisting of a single frequency presented as a sine wave each, we are presenting the 

whisker system with natural stimuli consisting of a whole range of frequencies. It is therefore impossible to 

directly compare the results, but further experiments are needed to elucidate the way by which the brain 

combines signals at different frequencies.  



Neural Information Processing - Letters and Reviews                                      Vol. 4, No. 1, July 2004                 

17 

5. Future Work 
 

The research described in this paper results in properties of simulated cells coding for natural whisker 

stimuli. In a next step, we will perform behavioural experiments on an artiÞcial mouse robot. One of the 

advantages to use sparse coding in a robotic setup is the task independence of the sensory modality. Sparse 

models for the visual domain have already been applied successfully to biologically inspired sensorimotor tasks 

[27]. The receptive Þelds of the simulated neurons from our studies will be used to learn to discriminate different 

objects and textures. This will be based on the activation of a small number of neurons which are optimally 

tuned to the nature of the stimuli instead of using the original raw signal.  
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